two-sided limit(双侧极限):在微积分/数学分析中,指当自变量 \(x\) 从某点 \(a\) 的左侧与右侧同时逼近时,函数 \(f(x)\) 的值都趋近于同一个数 \(L\),则称 \(\lim_{x\to a} f(x)=L\) 存在,并称其为双侧极限。(若左右极限不相等,则双侧极限不存在。)
/ˌtuː ˈsaɪdɪd ˈlɪmɪt/
If the left-hand and right-hand limits match, the two-sided limit exists.
如果左极限与右极限相同,那么双侧极限就存在。
To prove the two-sided limit at \(x=a\), we often show both one-sided limits exist and are equal, then use the \(\varepsilon\)-\(\delta\) definition to confirm it rigorously.
要证明在 \(x=a\) 处的双侧极限,常先证明左右极限都存在且相等,再用 \(\varepsilon\)-\(\delta\) 定义进行严格验证。
two-sided 由 two(两)+ sided(有……侧/面)构成,强调“从两边”;limit 源自拉丁语 *limes/limit-*,本义与“边界、界限”相关,数学中引申为“趋近的界限/极限”。合起来即“从左右两侧共同逼近所得的极限”。